Home | Contact | Sitemap | 中文 | CAS
  Location:Home> People
People
Name:
CHEN Jitao
Education:
Ph.D.
Research direction:
 
Academic
title:
Professor
Postal Code:
210008
Subject
categories:
Sedimentology
Mailing
Address:
39 East Beijing Road, Nanjing, China
E-mail:
jtchen@nigpas.ac.cn

Resume:

  I obtained my B.S. (2004) from Shandong University of Science and Technology, China, and Ph.D. (2011) from Seoul National University, South Korea. My research interests focus on field-based, process-oriented, integrated sedimentological, stratigraphic, and geochemical studies from the Precambrian to the entire Paleozoic, and specifically on sedimentary processes, depositional cycles and sequences, and microbialites and microbial-metazoan reefs. I have been working on integrated sedimentology, stratigraphy, and geochemistry of the Cambrian and Ordovician since 2004. Recently, I also start to work on sedimentary and geochemical records (C, O, N, Sr isotopes and major-trace elements) of the late Paleozoic ice age in the east Paleotethys Ocean regions and the implications for paleoclimatology, paleoceanography, and paleobiologic evolution. 

Direction:

主要通过沉积学、地层学和沉积地球化学的综合研究,深入揭示“深时”地史中大陆风化、古气候、及古海洋环境的演变过程及其之间的相互作用,探索古生代重要生物事件的古环境背景及生物与环境的协同演化规律。目前主要研究晚古生代大冰期古气候与古海洋环境。

Achievements:
Publications:

#研究生/博士后, *通讯作者)

2022

[66] Chen, J.T.*, Montanez, I.P.*, Zhang, S., Isson, T.T., Macarewich, S.I., Planavsky, N.J., Zhang, F., Rauzi, S., Daviau, K., Yao, L., Qi, Y.P., Wang, Y., Fan, J.X., Poulsen, C.J. Anbar, A.D., Shen, S.Z., Wang, X.D.*, 2022. Marine anoxia linked to abrupt global warming during Earth’s penultimate icehouse. PNAS, 119 (19), e2115231119.

[65] Chen, J.T.*, Chen, B., Montanez, I.P., 2022. Carboniferous isotope stratigraphy in The Carboniferous Timescale (edited by Lucas, S.G., Schneider, J.W., Wang, X., and Nikolaeva, S.), Geological Society, London, Special Publications, 512, 197–211.

[64] Li, W.J.#, Chen, J.T.*, Hakim, A.J., Myrow, P.M., 2022. Middle Ordovician mass-transport deposits from the western Inner Mongolia, China: mechanisms and implications for basin evolution. Sedimentology, 69, 1301–1338.

[63] Gao, B.#, Chen, J.T.*, Qie, W.K., Wang, X.D., 2022. Revisiting the paleogeographic framework of northeastern Gondwana in the late Paleozoic: implications from detrital zircon analysis. Sedimentary Geology, 434, 106144.

 

2021

[62] 杨文莉#, 仲钰天, 辛浩, 郑全锋, 祁玉平, 王玥, 陈吉涛*, 2021. 安徽巢湖凤凰山晚古生代大冰期沉积特征与碳同位素变化,地层学杂志, 45 (1), 3848.

[61] 李莹, 王向东, 胡科毅, 黄兴, 张水昌, 张斌, 祁玉平, 陈吉涛, 要乐, 2021. 中国石炭纪岩石地层划分和对比. 地层学杂志, 45(3): 303318.

[60] Chen, B., Chen, J.T., Qie, W.K., Huang, P., He, T.C., Joachimski, M.M., Regelous, M., Pogge von Strandmann, P.A.E., Liu, J.S., Wang, X.D., Monta?ez, I.P., Algeo, T.J., 2021. Was climatic cooling during the earliest Carboniferous driven by expansion of seed plants? Earth and Planetary Science Letters, 565, 116953.

[59] Luo, M., Chen, J.T., Qie, W.K., Huang, J.Y., Zhang, Q.Y., Zhou, C.Y., Wen, W., 2021. Microbially-induced carbonate precipitation in a Middle Triassic microbial mat deposit from southwestern China: Implications for the origin of micrite. Journal of Earth Science, 33 (3), 633–645.

[58] Wang, X.D., Hu, K.Y., Shi, Y.K., Chen, J.T., Yang, S.R., Ye, X.Y., Li, X.M., Song, Y.F., Chen. B., Chang, X.L., Yao, L., Zhang, Y.C., Fan, J.X., Shen, S.Z., 2021. The missing upper Carboniferous in the Cimmerian Continent: A critical review. Earth-Science Reviews, 217, 103627.

[57] Griffin, J.M., Montanez, I.P., Glessner, J.J.G., Chen, J.T., Willmes, M., 2021. Geologic variability of conodont strontium isotopic composition quantified by laser ablation multiple collection inductively coupled plasma mass spectrometry. Palaeogeography, Palaeoclimatology, Palaeoecology, 568, 110308.

[56] Huang, X., Wang, Y., Ueno, K., Zhang, X.H., Jin, S.S., Chen, J.T., 2021. First record of Late Pennsylvanian fusulinids from the North Tianshan belt, NW China. Geological Journal, 56, 6053–6072.

 

2020

[55] 陈吉涛*, 2020. 软沉积物变形构造研究进展. 地层学杂志, 44 (1), 64–75.

[54] 辛浩#陈吉涛*2020. 鲁西九龙山剖面寒武系苗岭统-芙蓉统之交碳酸盐岩显微图像数据集. 中国科学数据2020, 5(3), 196–204.

[53] Tian, X.X. #, Chen, J.T.*, Yao, L., Hu, K.Y., Qi, Y.P., Wang, X.D., 2020. Glacio-eustasy and δ13C across the Mississippian–Pennsylvanian boundary in the eastern Paleo-Tethys Ocean (South China): Implications for mid-Carboniferous major glaciation. Geological Journal, 55, 2704–2716.

[52] Zhang, T. #, Myrow, P.M., Fike, D.A., McKenzie, N.R. Yuan, J., Zhu, X., Li, W., Chen, J.T.*, 2020. Sedimentology, stratigraphy, and detrital zircon geochronology of Mesoproterozoic strata in the northern Helan Mountains, western margin of the North China Block. Precambrian Research, 343, 105730.

[51] Wang, Z.P. #, Chen, J.T.*, Liang, T.T., Yuan, J.L., Han, C., Liu, J.Y., Zhu, C.L., Zhu, D.C., Han, Z.Z.*, 2020. Spatial variation in carbonate carbon isotope during the Cambrian SPICE event across the North China Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 546, 109669.

[50] Yao, L., Aretz, M., Chen, J.T., Qi, Y.P., 2020. Earliest Carboniferous stromatolites from the Qianheishan Formation, Dashuigou section, northwestern China: Implications for microbial proliferation after the end-Devonian mass extinction. Geological Journal, 55, 3361–3376.

[49] Yao, L., Aretz, M., Wignall, P., Chen, J.T., Vachard, D., Qi, Y.P., Shen, S.Z., Wang, X.D., 2020. The longest delay: Re-emergence of coral reef ecosystems after the Late Devonian extinctions. Earth-Science Reviews, 203, 103060.

[48] Qi, Y.P., Barrick, J.E., Hogancamp, N.J., Chen, J.T., Hu, K.Y., Wang, Q.L., Wang, X.D., 2020. Conodont faunas across the Kasimovian-Gzhelian boundary (Late Pennsylvanian) in South China and implications for the selection of the stratotype for the base of the global Gzhelian stage. Papers in Palaeontology, 6, 439–484.

[47] Hu, K.Y., Hogancamp, N.J., Lambert, L.L., Qi, Y.P., Chen, J.T., 2020. Evolution of the conodont Diplognathodus Ellesmerensis from D. Benderi sp. nov. at the Bashkirian-Moscovian (Lower-Middle Pennsylvanian) boundary in South China. Papers in Palaeontology, 6, 627–649.

 

2019

[46] Chen, J.T.*, Sheng, Q.Y., Hu, K.Y., Yao, L., Lin, W., Montanez, I.P., Tian, X.X., Qi, Y.P., Wang, X.D., 2019. Late Mississippian glacio-eustasy recorded in the eastern Paleo-Tethys Ocean (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 531, 108873.

[45] Li, W.J. #, Chen, J.T.*, Wang, L.W., Fang, X., Zhang, Y.D., 2019. Slump sheets as a record of regional tectonics and paleogeographic changes in South China. Sedimentary Geology, 392, 105525.

[44] Wu, H.C., Fang, Q., Wang, X.D., Hinnov, L.A., Qi, Y.P., Shen, S.Z., Yang, T.S., Li, H.Y., Chen, J.T., Zhang, S.H., 2019. An ~34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm. Geology, 47, 83–86.

[43] Montanez, I.P., Hu, X.M., Hou, M.C., Wang, C.S., Chen, J.T., and the DDE Sedimentology and Palaeogeography Groups, 2019. Sedimentological/ Palaeogeographic Data as Fundamental Building Blocks of the DDE Project: Critical Underpinning of Reconstructing Deep-time Earth Systems. Acta Geologica Sinica (English Edition), 93, 52–54.

[42] Wang, X.D., Hu, K.Y., Qie, W.K., Sheng, Q.Y., Chen, B., Lin, W., Yao, L., Wang, Q.L., Qi, Y.P., Chen Jitao, Liao, Z.T., Song, J.J., 2019. Carboniferous integrative stratigraphy and time scale of China. Science China Earth Sciences, 62 (1), 135–153.

 

2018

[41] Chen, J.T.*, Montanez, I.P., Qi, Y., Shen, S., Wang, X., 2018. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46, 395–398.

[40] Montanez, I.P., Osleger, D.J., Chen, J.T., Wortham, B.E., Stamm, R.G., Nemyrovska, T.I., Griffin, J.M., Polataev, V.I., Wardlaw, B.R., 2018. Carboniferous climate teleconnections archived in coupled bioapatite δ18OPO4 and 87Sr/86Sr records from the epicontinental Donets Basin, Ukraine. Earth and Planetary Science Letters, 492, 89–101.

[39] Lang, X.G., Chen, J.T., Cui, H., Man, L., Huang, K.-J., Fu, Y., Zhou, C., Shen, B., 2018, Cyclical cold climate during the Nantuo glaciation: evidence from the Nantuo Formation in the Yangtze Block, South China. Precambrian Research, 310, 243–255.

[38] Lee, H.S., Chen, J.T., Han, Z. Chough, S.K., 2018. Depositional processes and environmental changes during initial flooding of epeiric platform: Liguan Formation (Cambrian Series 2), Shandong Province, China. Geosciences Journal, 22 (6), 903–919.

[37] 李文杰#, 张元动, 陈吉涛, 袁文伟, 2018. 浙西常山蒲塘口剖面上奥陶统沉积相特征. 地层学杂志, 42 (4), 393–407.

 

2017

[36] Myrow, P.M.*, Chen, J.T.*, Snyder, Z., Leslie, S., Fike, D., Fanning, M., Yuan, J., Tang, P., 2017. Depositional history, tectonics, and provenance of the Cambrian–Ordovician succession in the western margin of the North China Block: Reply. Geological Society of America Bulletin, 129, 1022–1024.

[35] Wang, Q., Qi, Y., Korn, D., Chen, J.T., Sheng, Q., Nemyrovska, T., 2017. Progress on the Visean-Serpukhovian boundary in South China and Germany. Newsletter on Carboniferous Stratigraphy, 33, 35–42.

[34] Hu, K., Qi, Y., Wang, Q., Nemyrovska, T.I., Chen, J.T., 2017. Early Pennsylvanian conodonts from the Luokun section of Luodian, Guizhou, South China. Palaeoworld, 26, 64–82.

 

2016

[33]Chen, J.T.*, Monta?ez, I.P., Qi, Y., Wang, X., Wang, Q., Lin, W., 2016. Coupled sedimentary and δ13C records of late Mississippian platform-to-slope successions from South China: insight into δ13C chemostratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 448, 162–178.

[32] Yao, L., Aretz, M., Chen, J.T., Webb, G.E., Wang, X., 2016. Global microbial carbonate proliferation after the end-Devonian mass extinction. Scientific Report, 6, Article number: 39694.

[31] Li, F., Teng, F., Chen, J.T., Huang, K., Wang, S., Lang, X., Ma, H., Peng, Y., Shen, B., 2016. Constraining ribbon rock dolomitization by Mg isotopes: Implications for the ‘dolomite problem’. Chemical Geology, 445, 208–220.

[30] Peng, Y., Shen, B., Lang, X., Huang, K., Chen, J.T., Yan, Z., Tang, W., Ke, S., Ma, H., Li, F., 2016. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China. Geochemistry, Geophysics, Geosystems, 17 (3), 1109–1129

 

2015

[29] Chen, J.T., 2015. Origin of the Furongian limestone breccias in the North China Platform. Science China Earth Sciences, 58 (5), 770–775.

[28] Myrow, P.M.*, Chen, J.T.*, Snyder, Z., Leslie, S., Fike, D., Fanning, M., Yuan, J., Tang, P., 2015. Depositional history, tectonics, and provenance of the Cambrian–Ordovician succession in the western margin of the North China Block. Geological Society of America Bulletin, 127, 1174–1193.

[27] Myrow, P.M.*, Chen, J.T.*, 2015. Estimates of large magnitude Late Cambrian earthquakes from seismogenic soft-sediment deformation structures: Central Rocky Mountains. Sedimentology, 62 (3), 621–644.

[26] Bayet-Goll, A.*, Chen, J.T.*, Moussavi-Harami1, R., Mahboubi, A., 2015. Depositional processes of ribbon carbonates in middle Cambrian of Iran (Deh-Sufiyan Formation, Central Alborz). Facies, 61 (9), 1–18.

[25] Han, Z., Zhang, X., Chi, N., Han, M., Woo, J., Lee, H.S., Chen, J.T.*, 2015. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates and Evaporites, 30, 373–386.

[24] Lee, J.-H., Chen, J.T., Chough, S.K., 2015. The middle–late Cambrian reef transition and related geological events: A review and new view. Earth-Science Reviews, 145, 66–84.

[23] Lee, J.-H., Chen, J.T., Woo, J., 2015. The earliest Phanerozoic carbonate hardground (Cambrian Stage 5, Series 3): implications to the paleoseawater chemistry and early adaptation of hardground fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 172–179.

[22] Lü, D., Li, Z., Chen, J.T., Liu, Y., Zhang, Z., Liang, J., Liu, H., 2015. Depositional environments of the upper Permian quartzose sandstone (Shandong Province, North China): insight from trace element geochemistry. Journal of Earth Science, 26 (2), 273–284.

[21] Qie, W., Liu, J., Chen, J.T., Wang, X., Mii, H., Zhang, X., Huang, X., Yao, L., Algeo, T.J., Luo, G., 2015. Local overprints on the global carbonate δ13C signal in Devonian-Carboniferous boundary successions of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 418, 290–303.

 

2014

[20] 陈吉涛, 2014. 碳酸盐岩沉积学的研究典范——书评《北美碳酸盐岩滩——劳伦大陆寒武-奥陶系Sauk巨层序地质与经济资源》. 地层学杂志, 38 (1): 109–110.

[19] Chen J.T., Lee J.-H., Woo, J., 2014. Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 246–259.

[18] Chen, J.T.*, Lee, J.-H., 2014. Current progress on the geological record of microbialites and microbial carbonates. Acta Geologica Sinica (English Edition), 88 (1), 260–275.

[17] Chen, J.T.*, 2014. Surface and subsurface reworking by storms on a Cambrian carbonate platform: evidence from limestone breccias and conglomerates. Geologos, 20 (1), 13–23.

[16] Lv, D., Chen, J.T.*, 2014. Depositional environments and sequence stratigraphy of the Late Carboniferous?Early Permian coal-bearing successions (Shandong Province, China): sequence development in an epicontinental basin. Journal of Asian Earth Sciences, 79, 16–30.

[15] Lv, D., Chen, J.T., Li, Z., Zheng, G., Song, C., Liu, H., Meng, Y., Wang, D., 2014. Controlling factors, accumulation model and target zone prediction of the coal-bed methane in the Huanghebei Coalfield, North China. Resource Geology, 64 (4): 332–345.

[14] Lee, J.-H., Chen, J.T., Choh, S.-J., Lee, D.-J., Han, Z., Chough, S.K., 2014. Furongian (late Cambrian) sponge–microbial maze-like reefs in the North China Platform. Palaios, 29, 27–37.

[13] Lee, J.-H., Lee, H.S., Chen, J.T., Woo, J., Chough, S.K., 2014. Calcified microbial reefs in Cambrian Series 2, North China Platform: implications for the evolution of Cambrian calcified microbes. Palaeogeography, Palaeoclimatology, Palaeoecology, 403, 30–42.

[12] Qi, Y., Nemyrovska, T.I., Wang, X., Chen, J.T., Wang, Z., Lane, H.R., Richards, B.C., Ueno, K., Hu, K., Wang, Q., 2014. 2014. Late Visean – early Serpukhovian conodont succession at the Naqing (Nashui) section in Guizhou, South China. Geological Magazine, 151 (1), 254–268.

 

2013

[11] Chen, J.T., Lee, H.S., 2013. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology, 288, 81–94.

[10] Chough S.K., Chen, J.T.*, 2013. Generation of subsurface injection flow in a carbonate platform. Geosciences Journal, 17 (1), 3–8.

 

2012

[9] Chen, J.T., Chough, S.K., Lee, J.-H., Han, Z., 2012. Sequence-stratigraphic comparison of the upper Cambrian Series 3 to Furongian succession between the Shandong region, China and the Taebaek area, Korea: high variability of bounding surfaces in an epeiric platform. Geosciences Journal, 16 (4), 357–379.

[8] Lee, J.-H., Chen, J.T.*, Chough, S.K., 2012. Demise of an extensive biostromal microbialite in the Furongian (late Cambrian) Chaomidian Formation, Shandong Province, China. Geosciences Journal, 16, 275–287.

 

2011

[7] Chen, J.T., Chough, S.K., Han, Z., Lee, J.-H., 2011. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian formations (late Middle Cambrian to Furongian), Shandong Province, China: Sequence–stratigraphic implications. Sedimentary Geology, 233, 129–149.

[6] Lv, D., Li, Z., Chen, J.T., Liu, H., Guo, J., Shang, L., 2011. Characteristics of the Permian coal-formed gas sandstone reservoirs in Bohai Bay Basin and the adjacent areas, North China. Journal of Petroleum Science and Engineering, 78, 516–528.

 

2010

[5] Chen, J.T., Han, Z.Z., Zhang, X., Fan, A., Yang, R., 2010. Early diagenetic deformation structures of the Furongian ribbon rocks (Shandong Province, China)—a new perspective of the genesis of limestone conglomerates. Science China Earth Sciences, 53, 241–252.

[4] Lee, J.-H., Chen, J.T., Chough, S.K., 2010. Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 621–632.

[3] Chough, S.K., Lee, H.S., Woo, J., Chen, J.T., Choi, D.K., Lee, S.-B., Kang, I., Park, T.-Y., Han, Z.Z., 2010. Cambrian stratigraphy of the North China Platform: revisiting principal sections in Shandong Province, China. Geosciences Journal, 14 (3), 235–268.

 

2009

[2] Chen, J.T., van Loon, A.J., Han, Z.Z., Chough, S.K., 2009. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sedimentary Geology, 221, 1–6.

[1] Chen, J.T., Chough, S.K., Chun, S.S., Han, Z.Z., 2009. Origin of limestone pseudoconglomerates in the Gushan and Chaomidian formations (Late Cambrian), Shandong Province, China: Early diagenetic sediment deformation caused by storm-wave loading under shallow-burial conditions. Sedimentology, 56, 1174–1195.

Community service:
Research Projects: